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The bootstrap model of the V (vector) meson octet, in which these particles produce themselves as reso­
nances in the P wave, two-particle states of the PS (pseudoscalar) meson octet, is generalized to include the 
effect of mass splitting. The three F-meson masses and five V-PS-PS interaction constants are considered 
as functions of the three PS-meson masses. Only terms linear in the deviations from degeneracy are included 
in the dispersion relations. The physically observed PS-meson masses lead to a calculated p/K* mass ratio 
significantly smaller than one, while the calculated ratio of the mass of the isoscalar V meson to that of the 
K* is either somewhat larger than or approximately equal to one. The mass splittings lead to deviations in 
the ratios of the interaction constants from the values corresponding to unitary symmetry, but the deviations 
are small enough so that unitary symmetry is satisfied approximately. The calculated pirw and K*TTK inter­
action constants are about 2 or 2J times larger than the experimental values. 

I. INTRODUCTION 

IT has been shown by the author that if the V (vector) 
mesons p, K*, and either the <p or co are regarded as 

degenerate resonances in the two-particle, P-wave 
states of the degenerate, PS (pseudoscalar) mesons TT, 
K, and rj, SL simple bootstrap model predicts that the 
ratios of the V-PS-PS interaction constants are equal 
to the ratios predicted by the octet model of unitary 
symmetry.1 In the present paper the degeneracy 
assumptions are removed. The bootstrap model leads 
to eight independent equations involving the masses 
and interaction constants, so that if the PS-meson 
masses are specified, one may solve the equations for 
the three F-meson masses and the five interaction 
constants y^RK, yPKK, YP^ , yM*K, and yMvK, (where 
the symbol M represents the K*). We will take the 
PS-meson masses from experiment. 

There are three related purposes for this calculation. 
The first is to calculate the splitting of the F-meson 
degeneracy that results from the experimentally 
observed splitting of the PS degeneracy. The F-meson 
mass differences will be compared with experiment, 
providing a test of the bootstrap model. 

The second purpose has to do with the physical 
interaction constants. In most comparisons of unitary 
symmetry with experiment only partial correction for 
the effects of mass differences is made. For example, it 
is often assumed that the ratios of the physical inter­
action constants or, equivalently, of the reduced widths 
of resonances, are given exactly by unitary symmetry. 
This assumption is certainly not correct, but one does 
not know how to improve it without using a dynamical 
theory.2 The assumption of exact interaction symmetry 
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1 R. H. Capps, Phys. Rev. Letters 10, 312 (1963). 
2 This problem is most famous in connection with the pseudo-

scalar meson-baryon-baryon coupling constants. One often hears 
the question, "Are the pseudoscalar coupling constants G2 or the 
pseudovector coupling constants / 2 to be related by unitary 
symmetry?" This question is misleading since it is clear that the 
problem would exist even if only one set of coupling constants had 
been defined. The question of how the PS-meson mass differ­
ences affect interaction constants can never be answered without 

seems particularly dangerous when applied to PS-meson 
interactions, since the ratios of the squares of the masses 
of the PS mesons are very different from unity. In the 
bootstrap model, one makes no such assumption, but 
actually calculates the physical interaction constants. 
In this model one can see whether or not the unitary 
symmetry of the interaction constants is preserved 
approximately when the large PS-meson mass splitting 
is included. Furthermore, the predicted deviations from 
exact symmetry may be tested experimentally. 

The third purpose of this calculation is to clear up 
the question of the importance of the degeneracy 
assumptions in the results of Ref. 1. In a recent letter, 
Sakurai shows that if one assumes degenerate PS and 
F-meson octets, and assumes that the second-order, 
"bubble-diagram" mass corrections resulting from the 
V-PS-PS interactions are such as to preserve the 
degeneracy in both octets, one obtains four equations 
that imply that the ratios of the interaction constants 
must be those corresponding to unitary symmetry.3 The 
implication is given that this prescription is essentially 
equivalent to the bootstrap prescription of Ref. 1, and 
that unitary symmetry is predicted in Ref. 1 only 
because both PS degeneracy and V degeneracy are 
assumed. Actually, the considerations of Sakurai are 
not equivalent to the bootstrap model, as may be seen 
from the fact that there are eight, independent, self-
consistency equations in the bootstrap model. These 
equations may be used to determine not only the inter­
action ratios, but the magnitude of the interaction and 
all three F-meson masses separately. The F-meson 
degeneracy assumption of Ref. 1 is almost superfluous.4 

a dynamical theory. Furthermore, one cannot avoid the problem 
of mass differences by discussing amplitudes rather than inter­
action constants, unless he considers only energies that are very 
high compared to all the masses. 

3 J. J. Sakurai, Phys. Rev. Letters 10, 446 (1963). This letter 
may be divided into two parts. In the first part it is argued that 
the conclusions of Ref. 1 are obvious. In the second part (last half 
of the last paragraph) it is argued that the conclusions of Ref. 1 
are not obvious. We are concerned here only with the first part of 
this letter. 

4 Since the self-consistency equations are nonlinear, it may be 
that if one relaxes the F-meson degeneracy assumption, he admits 
additional individual solutions. It is not known as yet whether, for 
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Furthermore, as is shown in Sec. I l l B of the present 
paper, the PS-meson degeneracy assumption is not 
necessary for the prediction of approximate unitary 
symmetry. 

II. THE METHOD 

A. Basic Equations 

Experimentally, there appear to be four types of 
strongly interacting vector bosons, the p, K* (denoted 
here by M), the co and the <p.b The hypercharges and 
isotopic spins of these particles are, respectively, (0,1), 
( ± 1 , | ) , (0,0), and (0,0). Only one of the two isoscalar 
V mesons can occur as a resonance or bound state of 
two PS mesons in our model; this follows from the fact 
that there is only one P wave, P 5 + P 5 _ s t a t e of the 
appropriate quantum numbers, the K+K state.6 For 
definiteness, we denote the included isoscalar V meson 
by the symbol <p, although in reality this particle may 
correspond to the co or to a linear combination of the <p 
and co. 

The dispersion technique used here is a modification 
of that used in earlier works.1'7'8 The coupling of the 
PS+PS, P-wave scattering states to multiple-particle 
states or states involving other than PS mesons is 
neglected. The only forces considered are those resulting 
from the exchange of the V mesons p, M, and <p; the 
F-meson widths are neglected in computing the forces. 
The scattering amplitudes in Born approximation are 
then taken as the numerator function N in the expres­
sion T= ND~\ and a once-subtracted dispersion relation 
is written for D. I t is demanded that three resonance or 
bound-state poles develop, which may be identified with 
the p, M, and <p, and that no other such poles develop. 
The requirements that the masses and coupling con­
stants of these resonances or bound states be equal to 
those assumed initially for the corresponding V mesons 
give rise to eight self-consistency equations for the five 
coupling constants and three F-meson masses. The <p 
meson is coupled only to the K+K state; this system 
yields two self-consistency equations. The p is coupled 

fixed PS-meson masses, the requirement that each particle has 
at least one nonzero coupling constant defines a unique solution 
to the model. 

6 For experimental evidence concerning the <p meson, see P. 
Schlein, W. E, Slater, L. T. Smith, D. H. Stork, and H. K. Ticho, 
Phys. Rev. Letters 10, 368 (1963); P. L. Connolly, E. L. Hart, 
K. W. Lai, G. London, G. C. Moneti, R. R. Rau, N. P. Samios, 
I. O. Skillicorn, S. S. Yamamoto, M. Goldberg, M. Gundzik, 
J. Leitner, and S. Lichtman, Phys. Rev. Letters 10, 371 (1963). 

6 Our assumption that one of the isoscalar V mesons is not 
strongly coupled to the K+K state is common to the best-known 
theoretical models that accommodate two such V mesons. In a 
simple model of unitary symmetry, one of the two V mesons must 
be a unitary singlet, which has the wrong symmetry under hyper-
charge reflection to be coupled to a P-wave, PS+PS state. In 
Sakurai's F-meson model [J. J. Sakuri, Ann. Phys. (N. Y.) 11, 1 
(I960)], the coupling of one of the V mesons is proportional to 
the baryon number, so that this particle is not coupled strongly 
to mesons. I t should be noted that Sakurai's model and unitary 
symmetry are compatible. 

7 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 
8 R. H. Capps, Phys. Rev. 131, 1307 (1963). 

to the 7r+7r and K+K channels, and the M is coupled 
to the ir+K and r)+K channels; each of these two-
channel systems gives rise to three self-consistency 
equations. 

We define the P-wave amplitude T# between two 
PS+PS states i and j in terms of elements of the 
unitary C/-matrix by the equation, 

where s is the square of the total energy, and qi and qj 
are the magnitudes of the particle three-momenta in 
the states i and j . All quantities refer to the center-of-
mass system, and h and c are taken as unity. We 
illustrate our method by considering one of the two-
channel systems, denoting the channels by 1 and 2. The 
matrix NLt~l method is used.9 We assume that the Born-
approximation amplitudes N for the three processes 
1 —> 1, 2 —> 2, and 1 <=± 2 are proportional to a common 
function of energy f3(s), so that we may write 

Nvis^Ftfls), (1) 

where the Fy are constants. [When the meson octets are 
not degenerate, the proportionality condition of Eq. (1) 
is an approximation. The accuracy of this approxima­
tion is discussed in Sec. I l l C J The unitarity condition 
for the inverse amplitude T~l is 

where the function 6i(s) is unity if q^0 and zero if 
qi2<0. If one solves the once-subtracted dispersion 
relation for the denominator matrix Z>, using the above 
unitarity condition, the resulting expressions for the 
amplitudes 7# are, 

Tu = I ^ W I - ^ W t F n + a a W C F ^ - F n F a a ] } , (2a) 

T12-\D(s)\~^(s)F12, (2b) 

\D(s)\=\-a1(s)Fu~~a2(s)F22 

-al(s)a2(s)lF12
2-FllF22']J (2c) 

s-st r°° ds'q/^is') 
«<(*) = / — , (2d) 

ir Jqi*^o s'*(s'—st)(s'—s—ie) 

where st is the value of s where the subtraction is made. 
The equation for T22 is obtained by reversing the sub­
scripts 1 and 2 in Eq. (2a). 

Following the procedure of Refs. 1 and 8, we define 
aitr to be the real part of en and Tij,r and \Dr\ to be the 
expressions for Ty and \D\ that result if en is replaced 
by cntr. The condition that a resonance or bound state 
occurs at the energy mv2 is 

I ^ M h o . (3) 
The interaction constants (reduced partial widths) of 
the resonance or bound state at my2 are defined by the 

9 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960). 
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equation, 

7fYj/(4:'r) = %l(niv2—s)Tij}r~]s=mV*, (4) 

which applies to all three processes 1 —»1, 2 —> 2, and 
1 <=̂  2. I t can be shown that one of the four equations 
represented by Eqs. (3) and (4) is implied by the other 
three, so there are three independent self-consistency 
equations. 

The application of Eq. (4) to the inelastic amplitude 
gives a simple equation, i.e., 

T1T2 3 r Fiffi(s) -j 

4TT SLd\Dr\/dsJs=mV^ 

Two other simple equations may be obtained by 
combining Eqs. (3) and (4), 

yia1(mv2)F12=y2ll—a2(mv2)F22], (6a) 

y2a2(niv2)Fi2=yiZl—ai(niv2)F1i~]. (6b) 

These last three equations are the self-consistency 
equations for either of the two-channel systems, 
expressed in a simple form.10 

B. The Degeneracy Solution 

I t has been shown that if the PS mesons are de­
generate and the V mesons are degenerate, and each of 
the six types of particles has at least one nonzero 
coupling constant, there is only one solution to the 
eight self-consistency equations.1,11 We shall refer to 
this solution as the "degeneracy solution." The ratios 
of the interaction constants in this solution are those 
predicted by unitary symmetry, i.e., 

- . 2 . - , 2 . * , 2 . * / 2 . « , 2 1 . 2 . 1 . 1 . 1 fl\ 
y<pKK -TPTTTT >yPKK 'JHTTK -yMvK — ± - 3 ^ 3 - 2 - 2 ? \*) 

yPTryPKK>0. 

The absolute magnitude of y<pKK2 and the resonance 
energy are obtained if one chooses the subtraction 
energy at the end of the left-hand cut. A careful 
integration yields values slightly different from those 
given in Ref. 1, i.e., 

y<pKK2/ (4TT) = 2.58, mv2/mPS
2= 5.89. 

C. Approximations Necessary for 
Quasidegeneracy Solution 

If large deviations from degeneracy are considered, 
the equations of the model become very complicated. 
In this paper, we will consider the simpler case of quasi­
degeneracy, i.e., we include in the equations only terms 
linear in the deviations of the squares of the masses and 
coupling constants from their values in the degeneracy 
solution. This method will shed no light on the problem 
of the number of different solutions to the bootstrap 
model, of course.4 

10 This choice of equations cannot be used if either 71 or 72 is 
zero. 

11 R. H. Capps (to be published). 

The deviations from degeneracy affect the quantities 
in Eqs. (2), (5), and (6) in several ways. The quantities 
Fi$(inv2) and aiimv2) depend directly on the mass of 
the resonating V meson. In addition, the forces 
Fij@(niv2) are quadratic in the interaction constants 
yi, and depend on the masses of the exchanged V 
mesons and of the FS mesons. The integrals a»(wy2) 
depend on the masses of the exchanged V mesons 
through fi(s') and the subtraction energy st. The 
ai{mv2) depend on the PS-meson masses through P(s'), 
St, and the relation between q? and s.12 

The proportionality condition of Eq. (1) is an 
approximation when degeneracy is not assumed. Some 
such approximation is necessary since, as discussed in 
Ref. 8, the scattering matrix T generally is not sym­
metric in an approximation to the N/D method when 
the numerator functions are not proportional. In the 
two-channel cases, we define P(s) so that F12@(s) 
represents the Born approximation to the inelastic 
amplitude exactly. This is convenient since in both two-
channel cases, only one V meson (the M meson) 
contributes to the force in the inelastic process. In order 
to describe the proportionality approximation used for 
the elastic amplitudes, we define 9d« to be the exact 
expression in the Born approximation for the amplitude 
Ta.12 The Born-approximation amplitudes enter in the 
self-consistency relations both through their values at 
the resonance energy and through the dispersion 
integrals. Accordingly, we make two alternate propor­
tionality approximations, defined below. 

(I) The constant Fa is chosen so that the ratio 
Fu/Fi2 is equal to the ratio of the Born-approximation 
amplitudes at the resonance energy, i.e., 

F«/F12= ^iii{mv2)/[Fl2^mv
2)']. 

(II) The constant Fa is chosen to give the correct 
dispersion integrals, i.e., 

Fii/Fi2=aii,r(mv2)/ao}r(fnv
2), 

where a<j,r is the value of at>r occurring in the degeneracy 
solution, and 

Oiiifr IS the expression for «o,r obtained 
when fi(s') is replaced by dlu(sf)/F12. 

In order to compare the above proportionality 
approximations, we consider the contribution of a 
particular vector meson to the Born approximation for 
a particular amplitude, and define 8v and 5s to be the 
deviations from the degeneracy-solution values of the 
square of the F-meson mass and the sum of the squares 

12 The'numerical crossing coefficients in the Born-approximation 
amplitudes may be obtained from Ref. 1, while the energy depend­
ence of the amplitudes and the relation between q? and s corre­
sponding to nondegenerate PS mesons are given in Eqs. (6), (7), 
and (8) of Ref. 8. Eqs. (7) and (8) of Ref. 8 are not completely 
general in that they refer to an amplitude with a common particle 
in the initial and final states. However, in the quasidegeneracy 
approximation, a Born-approximation amplitude depends on the 
PS-meson masses only through the sum of the deviations of the 
squares of the masses of the four PS mesons involved in the ampli­
tude, so these equations are sufficiently general for the present 
derivation. 
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of the masses of the four PS mesons involved in the 
amplitude. A numerical calculation shows that to first 
order the ratios of two such contributions at the 
resonance energy is 

9l1(wF
2)/9fl2(wy2)=l--0.225(57,i-5y,2)Mo-2 

+ 0 . 0 6 2 8 ( 5 S ) 1 - 5 S ) 2 ) M O - 2 , 

where the indices 1 and 2 denote the two contributions 
and juo2 denotes the square of the PS-meson mass in the 
degeneracy solution. On the other hand, the correspond­
ing ratio of the dispersion integrals of these two contri­
butions is 

« r , l ( ^ F 2 ) / « r , 2 ( w F 2 ) = 1 — 0 . 1 3 2 (<$F,1~~ 8v,2)jJ<Q~2 

+ 0 . 0 2 7 4 ( 5 S > 1 - 5 2 ( 2 ) M O - 2 . 

The differences between the corresponding coefficients 
in these two expressions represent an inaccuracy in­
herent in the method. Therefore, we compute all results 
separately with the two proportionality prescriptions I 
and II , and regard as meaningful only results common 
to the two prescriptions. 

The choice of the subtraction energy also presents a 
tricky problem since, when the degeneracy assumption 
is removed, the ends of the left-hand cuts are in different 
places. We denote by A the deviation in st from the 
degeneracy-solution value. To first order in the devia­
tions of the m2, the end of the cut corresponding to the 
contribution of a particular V meson to a particular 
amplitude is Si=4/x0

2—m0
2—Sy+Ss, where mo2=5.S9fxo2 

is the square of the degeneracy-solution value of the 
F-meson mass. Thus, if there were only one such 
contribution, an appropriate choice of A would be, 

A = - 6 F + 5 S . (8) 

In order to choose an appropriate A for each of the 
three sets of dispersion equations that generate the 
three resonances, one must take a suitable average over 
the contributing V and PS mesons.13 We consider the 
following three alternate averages, denoted by A, B, 
and C. 

(A) In each of the three cases, 8v of Eq. (8) is 
averaged simply over the V mesons that contribute 
forces. In the two-channel cases, 5s is set equal to the 
value appropriate to the inelastic process. The result of 
this average is 

A , = - i ( M - S p ) + 4 5 * , 

AP= -WP+K+^M)+28,+ 28K , (9a) 

where A; is the value of A used in the dispersion relations 
for the resonance i and 8{ is the deviation from the 
degeneracy-solution value of the square of the mass of 
the PS or V meson i, (i.e., m1,

2 = fi^-{-8irj mp
2 = mo2-{-8p, 

etc.). 

13 We take such, an average only for choosing subtraction 
energies, and not for computing any other factors in the equations. 

TABLE I. Calculated F-meson masses and deviations in the 
coupling constants resulting from the physical, PS-meson input 
parameters 5^=—0.92 and (5,/5T) = — J. The symbols AI, All, 
etc. refer to the subtraction and proportionality prescriptions 
denned in Sec. II C. 

Case 

Sp 

8M 
d^ 
€<pKK 

tpwir 

ePKK 

ZM-KK 

GMriK 

mM(MeV) 
(mp/mM)2 

(m<p/mM)2 

A I 

-3 .88 
-0 .21 

0.35 
0.26 

-0 .21 
-0 .17 

0.15 
-0 .10 

1180 
0.35 
1.10 

A l l 

-2 .60 
-0 .54 
-0 .39 

0.10 
-0 .09 
-0 .04 

0.05 
-0.02 

1144 
0.61 
1.03 

B I 

-3 .86 
0.28 
0.38 
0.26 

-0 .26 
-0 .18 

0.18 
-0 .10 

1228 
0.30 
1.02 

B II 

-2 .59 
-0 .27 
-0 .39 

0.10 
-0 .12 
-0 .04 

0.055 
-0 .01 

1173 
0.59 
0.98 

C I 

-2 .98 
-1 .25 
-0 .75 

0.085 
-0 .03 
-0.085 

0.07 
-0 .07 

1066 
0.63 
1.11 

C I I 

-2 .49 
-1 .18 
-1 .11 

0.02 
-0 .01 
-0 .03 

0.04 
-0 .04 

1074 
0.72 
1.01 

(B) The 8V and 5S in Eq. (8) are averaged according 
to the contributions of the different V and PS mesons 
to the resonance in the degeneracy solution. In the 
degeneracy solution, \Dr\ may be written in the form 
\Dr\ = l—ao'£,iFii, so that the relative contributions 
of the V mesons may be computed from the relative 
contributions to ^LiFu. The relative contributions of 
the PS mesons may be taken from the partial reduced 
widths of the resonance, i.e., the 7r+7r state contributes 
twice as much to the p as does the K+K state, since 
yPTnr2/yPKK2=2. The results of such an average are 

A , = - i ( V M p ) + « x , 

AP= - i ( V H , ) + (S/3)8T+ (4/3)5*, (9b) 

A J ¥ = —l8M—i8p+ 28K+8ir+8v. 

(C) The same subtraction energy is used for all three 
sets of dispersion equations; this energy is computed 
by averaging the 8v and 5s of Eq. (8) over the eight PS 
and eight V mesons. The results of this average are 

A ^ = A p = A J l f = - t « p - | ^ - j 5 M + t « x + i « , + 2«x . (9c) 

The prescription C is rather unphysical since the 
subtraction energy for a particular dispersion equation 
is determined partly by the masses of particles not 
involved in the equation. We include this prescription 
only for purposes of comparison. 

III. RESULTS FOR QUASIDEGENERACY SOLUTION 

We adopt the convention that the K mass is fixed, 
and set ntK2=n^— 1. There is no loss of freedom in this 
assumption, since the dispersion relations do not in­
volve absolute masses but only mass ratios. We denote 
the degeneracy-solution value of y#KK2 by 702. The 
quantity eryo2 represents the deviation from the 
degeneracy-solution value of the interaction constant 
y?. T h u s , y<pKK2=y02(l+6<pKK), 7pT7r2=Y02(f+€p™)> 
etc., as may be seen from Eq. (7). The notation for mass 
deviations is the same as in the preceding section. 

A value of (—|) for the input ratio 5,/5T corresponds 
to the physical PS-meson masses, w7r= 138 MeV, 
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mK=495 MeV, and 7^=550 MeV. We may make any 
convenient choice for the magnitude of 8*, since the 
quasidegeneracy equations are linear and homogeneous 
in the 6's and e's. In order to facilitate comparison with 
experiment, we have listed in Table I the results corre­
sponding to the physical PS-mass input values 
8^8-^= —j and 5T= ( m T

2 / w £ 2 ) - l = —0.92. We consider 
as physically meaningful only the results corresponding 
to the subtraction prescriptions A and B, and thus 
quote only results common to columns AI, Al l , BI, and 
BII of the table. I t is seen from these columns that the 
most striking effect of the PS mass differences is that 
the calculated p mass is lower than the M and <p masses, 
which is in agreement with experiment. 

A. The Vector-Meson Masses 

In order to make further comparisons with experi­
ment, we shall assume that the linear (quasidegeneracy) 
approximation is valid even for the large physical value 
of 8W. I t is seen from Table I that the percentage devia­
tions of all derived quantities are smaller than the input 
deviation of mr

2, so this procedure is reasonable. 
However, it is expected that if the linear assumption 
were dropped, significant modifications would result. 
This point is discussed further in Sec. IV. 

We use as experimental F-meson masses mp=750 
MeV, mM=SS5 MeV, m„=785 MeV, and w„=1020 
MeV. The value of mp

2/niM2 from the A and B columns 
of Table I is in the range 0.30-0.61, while the corre­
sponding experimental value is 0.72. The computed 
value of m^/ntM2 is in the range 0.98-1.10, while the 
corresponding experimental number is either mJ/niM2 

= 0.79, m<p
2/mM2= 1.33, or somewhere between if the 

isoscalar member of the unitary-symmetry octet is a 
linear combination of the o) and <p. The present calcula­
tion is not accurate enough to be considered as evidence 
concerning whether the co, <p, or a linear combination 
belongs with the octet.14 However, it is clear that the 
predicted F-meson mass ratios are in rough agreement 
with experiment. I t should be pointed out that when 
one replaces a wide resonance by a pole in convergent 
dispersion relations, an appropriate position for the 
pole is below that of the resonance.15 Hence, a predicted 
value of nip2/MM2 somewhat lower than the experimental 
value is desirable. 

The calculated M mass is in the range 1145-1230 
MeV, while the experimental value is 885 MeV. We 
note that the value W M ^ 8 8 5 MeV obtained in Ref. 8 
did not result from a complete bootstrap calculation for 
the V mesons, since mp was taken from experiment. 
These two calculations are compared in Sec. IV. 

14 In the author's opinion, it is also dangerous to decide this 
question on the basis of the Gell-Mann-Okubo mass formula, 
since this formula is also based on the nonphysical assumption 
that the deviations from degeneracy are small, (see Ref. 16). 

15 This is shown clearly in the work of Ball and Wong on form 
factors; J. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963). 

The basic reason that the p mass is smaller than the 
M and <p masses in the present calculation is quite 
simple; the largest term in the p wave function results 
from the TT+T state, so that the small value of the ir mass 
leads to a small value of the p mass. A large assumed 
deviation of the r\ mass leads to a corresponding effect. 
In order to illustrate this, we have calculated the effect 
of the unphysical input assumptions 8T=0 and 5,= 1, 
using the proportionality and subtraction prescriptions 
A and I. The results are 

8P= 0.075, 5^=1 .77 , 

5^=0.23, €<PKKZ=0.02 , 

€p7r7r= —0.16 , €PKK= —0.025 , 

€MTK=0.06, 6MnK= - 0 . 0 5 . (10) 

In this case the M is the only V meson whose mass is 
changed greatly, because the rj+K state is important in 
the M wave function, while the p and <p are not coupled 
directly to the r}. Because the quasidegeneracy equations 
are linear and homogeneous in 8t and e*, Eq. (10) and 
column AI of Table I may be used to compute the 
results of any choice of 8V and 8V corresponding to the 
proportionality and subtraction prescriptions A and I. 

The fact that the calculated relative deviations from 
degeneracy are smaller for the F-meson multiplet than 
for the PS-meson multiplet also has a simple explana­
tion, namely, the wave function for a particular V 
meson is an average over the different PS mesons. Thus, 
in our model, the p is light because the T+T is light, but 
Mp/ntcp is not as small as m^/niK because the p is a K-\-K 
part of the time. 

The Gell-Mann-Okubo mass formula,16 applied to 
the PS and F-meson octets, yields the relations 

(m^— MK2) = — 3 {m2—MR2) 
and 

(?np
2—niM2)= —^{m^—mM2). 

The assumptions on which this formula are based are 
quite different from those of the present paper, except 
for the one common assumption that only terms linear 
in the deviations from degeneracy are important. There 
is no relation between PS and F-meson masses implied 
by the Gell-Mann-Okubo assumptions. In the present 
model, one may choose the PS-meson masses to satisfy 
the Okubo formula (i.e., 811/87r=—%). However, it does 
not follow from such a choice that the F-meson masses 
satisfy the formula exactly. We have been unable to 
find a simple recipe for the proportionality and sub­
traction prescriptions that does lead to such an exact 
causal relation, and we do not know whether or not 
this causal relation would apply if a more exact pro­
cedure for writing and solving partial-wave dispersion 
relations in the quasidegeneracy approximation were 
found. 

16 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Okubo, Prog. 
Theor. Phys. (Kyoto) 27, 949 (1962). 
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B. The Interaction Constants 

I t is seen from the A and B columns of Table I that 
the calculated deviations e* of the interaction constants 
from the values of the degeneracy solution (exact 
unitary symmetry) depend somewhat on the propor­
tionality and subtraction prescriptions used. However, 
two important features of these calculated deviations 
are common to all the prescriptions. First, the ei are 
not huge; i.e., the calculated interaction constants are 
not extremely sensitive to the PS-meson mass splitting. 
Unitary symmetry remains a reasonable approximation 
to the interaction ratios despite the huge deviation from 
unity in the input value of m^/mi^. This result is 
encouraging to the point of view that unitary sym­
metry may describe the physical PS mesons. 

Secondly, the signs of the various deviations are a 
feature of the calculated ei that is common to the differ­
ent proportionality and subtraction prescriptions. For 
example, the predicted ratio Y P ^ / Y M ^ * : 2 is lower than 
the unitary symmetry value of f. Future experimental 
measurements of the y? will provide further tests of the 
bootstrap model. If these measurements indicate that 
unitary symmetry is approximately valid, and if the 
measurements are sufficiently accurate to detect devia­
tions from the exact ratios of Eq. (7), they will dis­
tinguish between the bootstrap model and other models 
involving unitary S}^mmetry. In those cases where the 
F-meson rest masses are lighter than those of the two 
PS mesons in the appropriate states, experimental 
determination of the coupling constants is difficult, of 
course, since it depends on some sort of extrapolation 
procedure. 

Part of the reason for the insensitivity of the calcu­
lated a to the PS-meson masses is that the two most 
important effects of deviations in these masses partially 
cancel. The most important such effect is the decrease of 
the momentum qi of a state i (at fixed energy) that 
results from an increase of the mass of either PS meson 
in the state i. This causes the dispersion integral on to 
decrease. However, this effect is cancelled partially by 
the increase in the Born approximation to the amplitude 
Ta that results from an increase in the mass of a PS 
meson in the state i. 

The most striking features of the relative magni­
tudes of the calculated u may be understood from 
the following considerations. For each resonance, 
the determinant of the denominator may be written, 
\D\ = l — J^iaiFu-\-x, where the Fa are quadratic in 
the coupling constants, and x is either zero (for the <p) 
or is quadratic in the a». This quantity x is small in all 
three cases, so that S t ^ r M ^ r l , where my2 is 
the resonance energy. In the resonance region, the on(s) 
are increasing functions of s. Therefore, if the rest mass 
of a vector meson is small compared to that of the 
constituent PS mesons, the cn(niv2) are small, and large 
values of the coupling constants in the Fa are required. 
For example, the p-meson rest mass is smaller than that 
of the M and <p, but is large compared to that of the 

most important constituent state, the TT+TT state. 
Hence, the p coupling constants are smaller than the 
degeneracy-solution values. Similarly, the <p/(K-\-K) 
mass ratio is small compared to either the p/(x+7r) or 
M/(w-\-K) mass ratio, so e<pKK is positive. 

Since the deviations of the Y;2 from the degeneracy-
solution values are not large, the problem discussed 
in Ref. 8 is still present; the predicted Y P ^ 2 and 
7MTTK2 are about 2 or 2 \ times as large as the experi­
mental values. This problem is discussed further in 
Sec. V. 

IV. COMPARISON WITH NONQUASIDEGENERATE 
CALCULATION 

The author has applied the bootstrap technique to 
the M(K*) meson, without using the approximation of 
small deviations from degeneracy.8 The M system is 
not completely self-determining; there are two more 
input than output parameters in the calculation of 
Ref. 8. Barbour and Nishimura are investigating the 
possibility of determining all the F-meson masses and 
V-PS-PS interaction constants from the observed PS-
meson masses without using the quasidegeneracy 
approximation.17 These authors also have treated the <p 
meson separately.18 

Some insight into the effect of removing the quasi­
degeneracy assumption may be obtained from a com­
parison of the present results with those of Ref. 8. The 
calculated M mass in Ref. 8 is approximately the 
experimental value of 885 MeV, which is lower than 
that of the present paper. This discrepancy does not 
result from the fact that the p mass is taken from 
experiment in Ref. 8 because the calculated M mass is 
not very sensitive to the p mass. Part of the discrepancy 
results from the different subtraction prescriptions 
used. The calculated M mass is sensitive to the sub­
traction energy used in the M-meson dispersion rela­
tions. In Ref. 8, only the cuts resulting from exchanged 
M mesons are used to determine the subtraction energy. 
We may use a corresponding prescription in the present 
paper, by writing AM = — 5 M + PS-meson terms [see 
Eqs. (8) and (9)]. The calculated M mass then depends 
only on the M-meson dispersion relations, and is 1065 
MeV or 1080 MeV, depending on which proportionality 
prescription is used. We believe that the discrepancy 
between ~1070 MeV and ~885 MeV results primarily 
from the quasidegeneracy assumption used here. 

In Ref. 8, only two relations between the three 
interaction constants JMTK2, 7MVK2, and V2ypT7ryPKK are 
obtained. However, if we assume that the ratio 
YM^VYMTTK2 lies in the range 0.59-0.88 (obtained from 
the A and B columns of Table I of the present paper), 
then the equations of Ref. 8 yield the results, 

1 . 8 5 < ( Y M . K 2 / 4 T T ) < 2 . 1 2 , 

1.09<(v2Yp7r.YpW7M7rK2)<1.13. (11) 

1 7 1 . Barbour and K. Nishimura (private communication). 
1 8 1 . Barbour and K. Nishimura, Nuovo Cimento 29, 288 (1963). 
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The corresponding quantities, determined from the A 
and B columns of Table I of the present paper, are in 
the ranges, 

1 .42<( 7W/4ir)<1.75, 
0.52< ( ^ Y P ™ Y P W Y M ^ 2 ) < 1 . 0 5 . (12) 

It is seen that both models predict that the ratio 
V2Tfir*!PKKHMTTK2 is smaller than the value f predicted 
by exact unitary symmetry. Much of the discrepancy 
between Eqs. (11) and (12) is associated with the 
smaller M mass occurring in Ref. 8 (see the discussion 
in Sec. I l l B of the present paper). However, we may 
conclude tentatively that if the quasidegeneracy 
assumption is removed, the comparison between 
calculation and experiment will be better for the 
average F-meson mass, and worse for the magnitudes 
of the interaction constants. 

V. CONCLUSIONS 

In the bootstrap model of the F-meson octet, the 
sensitivity of the physical F-PS-PS-meson interaction 
constants to the PS-meson mass ratios is sufficiently 
small so that the ratios of the interaction constants are 
described approximately by unitary symmetry, even if 
physical PS-meson masses are used. The calculated 
average F-meson mass, and the calculated F-meson 
mass splitting that result from the physically observed 
PS-meson mass splitting, are in rough agreement with 
experiment. On the other hand, the absolute magnitudes 
of the calculated interaction constants are about 2 or 
2\ times larger than those obtained from the observed 
p—>7r+7r and M-^TT+K decay widths. It has been 
pointed out that if the coupling of other states to the 
PS+PS states is important, inclusion of the other 
states probably would improve the agreement between 
the calculated and experimental values of the* interac­
tion constants.8'11 However, the question arises as to 
whether or not such an inclusion would at the same time 
destroy the agreement with respect to the average 
F-meson mass and the V-meson mass splitting. We 
discuss this question here. 

It is likely that the inclusion of other states in the 
model would affect the magnitudes of the interaction 
constants more than it would affect the average F-
meson mass. Such an effect has been observed in Ref. 1, 
and also by Balazs.19 In the bootstrap model of the 
F-meson octet in the degeneracy approximation 
(Ref. 1), the_coupling of the isotopic spin 1, ir+w state 
to the K+K state reduces ypinr

2 by §, but does not 
change the (F-meson/PS-meson) mass ratio at all. 
Similarly, in the bootstrap model of ir+ir resonances of 
Balazs, the effect of approximating other channels by 
including inelastic processes in the unitarity condition 
is to reduce resonance widths without altering the 
resonance positions significantly.19 In order to make 
clear the basic reason for this kind of effect, we note 

19 Louis A. P. Balazs, Phys. Rev. Letters 10, 170 (1963). 

that if the matrix N/D method used in Sec. I IA is 
applied to the P wave, ir+w elastic amplitude 
in the presence of an arbitrary number of coupled 
channels, the amplitude may be written in the form, 
T= ($i+y)/1D |, where 91 is the Born approximation 
for the T, \D\ is the determinant of the denominator 
matrix, and y is a sum of terms of order ^ 1 in the 
dispersion integrals [integrals analogous to the on of 
Eq. (2d)]. If y is zero and \D\ is linear in s, the calcu­
lated p mass depends only on the T+T channel, although 
the p7T7T reduced partial width may depend on many 
channels. Hence, the average F-meson mass will be 
insensitive to the inclusion of other channels if the 
added terms y in the numerators of the appropriate 
amplitudes are small and | D \ is approximately linear. 

We now turn to the question of the F-meson mass 
splitting. Let us assume that unitary symmetry is a 
valid approximation for all strong interactions. The 
deviations from degeneracy of the F multiplet then 
depend on the deviations from degeneracy of other 
multiplets. It is observed experimentally, both for 
states of baryon number one (the baryons and the P3/2, 
baryon-PS meson resonances) and for states of baryon 
number zero, that the relative mass splittings are 
greatest within the lightest multiplet. This effect is in 
agreement with the predictions of the present bootstrap 
model. It is reasonable to suppose that the greatest 
relative deviations from degeneracy occur within the 
PS-meson multiplet. These deviations are important 
in the F-meson dispersion relations because the left-
hand cuts are close to the physical regions for the 
PS+PS states. Therefore, one expects the PS-meson 
mass splitting to be the dominant cause of the F-meson 
mass splitting, provided that the important forces can be 
described approximately by unitary symmetry. In fact, 
one advantage of applying dispersion relations to 
particle multiplets in a theory in which a basic inter­
action symmetry is present, is that the approximation 
of neglecting distant singularities is expected to be 
particularly good when one compares the different 
states within a multiplet. 

We conclude that the present bootstrap model is 
incomplete, but that the basic relations between PS 
and F-meson masses occurring in the model may be 
real. If the model is extended so that the PS mesons 
themselves develop as poles in the appropriate states, 
as was done in Ref. 11 for degenerate multiplets, 
additional relations among the various mass splittings 
will be obtained. 
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